Inhibition of cyclooxygenase-2 in the rat renal medulla leads to sodium-sensitive hypertension.
نویسندگان
چکیده
Cyclooxygenase-2 expression in the renal medulla is regulated by dietary salt intake. The present study was performed to determine the influence of chronic inhibition of medullary cyclooxygenase-2 on arterial blood pressure in conscious Sprague-Dawley rats maintained on a high-salt (4% NaCl) or a low-salt (0.4% NaCl) diet. Rats were uninephrectomized and instrumented with femoral arterial and femoral vein or renal medullary interstitial catheters. Each rat received a continuous medullary or intravenous infusion of saline (0.5 mL per hour) for 3 control days, followed by infusion of the cyclooxygenase-2 inhibitor NS-398 (10 mg/kg per day) for 5 days. Medullary interstitial infusion of NS-398 significantly increased mean arterial pressure in the 4% NaCl group from 126+/-2 to 146+/-2 mm Hg (n=6) but did not alter blood pressure in the 0.4% NaCl group (n=6). Intravenous infusion of NS-398 to rats on the 4.0% NaCl diet also failed to alter mean arterial pressure (n=5). To test the blood pressure effect of a mechanistically different inhibitor of cyclooxygenase-2, an antisense oligonucleotide against cyclooxygenase-2 (18-mer; 8 nmol per hour) was infused into the renal medulla of rats maintained on a high-salt diet. Administration of the antisense oligonucleotide reduced cyclooxygenase-2 immunoreactive protein by 36% and significantly increased mean arterial pressure from 127+/-2 to 147+/-2 mm Hg (n=6). Renal medullary interstitial infusion of a scrambled oligonucleotide did not alter arterial pressure (n=5). These results demonstrate the importance of cyclooxygenase-2 in the renal medulla in maintaining blood pressure during high-salt intake.
منابع مشابه
Silencing of HIF prolyl-hydroxylase 2 gene in the renal medulla attenuates salt-sensitive hypertension in Dahl S rats.
BACKGROUND In response to high salt intake, transcription factor hypoxia-inducible factor (HIF) 1α activates many antihypertensive genes, such as heme oxygenase 1 (HO-1) 1 and cyclooxygenase 2 (COX-2) in the renal medulla, which is an important molecular adaptation to promote extra sodium excretion. We recently showed that high salt inhibited the expression of HIF prolyl-hydroxylase 2 (PHD2), a...
متن کاملHypoxia inducible factor-1α-mediated gene activation in the regulation of renal medullary function and salt sensitivity of blood pressure.
Many enzymes that produce natriuretic factors such as nitric oxide synthase (NOS), hemeoxygenase-1 (HO-1) and cyclooxygenase-2 (COX-2) are highly expressed in the renal medulla. These enzymes in the renal medulla are up-regulated in response to high salt intake. Inhibition of these enzymes within the renal medulla reduces sodium excretion and increases salt sensitivity of arterial blood pressur...
متن کاملOverexpression of HIF-1α transgene in the renal medulla attenuated salt sensitive hypertension in Dahl S rats.
Hypoxia inducible factor (HIF)-1α-mediated gene activation in the renal medulla in response to high salt intake plays an important role in the control of salt sensitivity of blood pressure. High salt-induced activation of HIF-1α in the renal medulla is blunted in Dahl S rats. The present study determined whether the impairment of the renal medullary HIF-1α pathway was responsible for salt sensi...
متن کاملRegulation and function of renal medullary cyclooxygenase-2 during high salt loading.
Prostaglandins (PGs) are important autocrine/paracrine regulators that contribute to sodium balance and blood pressure control. Along the nephron, the highest amount of PGE2 is found in the distal nephron, an important site for fine-tuning of urinary sodium and water excretion. Cylooxygenase-2 (COX-2) is abundantly expressed in the renal medulla and its expression along with urinary PGE2 excret...
متن کاملInhibition of renal outer medullary 20-HETE production produces hypertension in Lewis rats.
Recent studies have indicated that a deficiency in the production of 20-hydroxyeicosatetraenoic acid (20-HETE) in the outer medulla of the kidney may contribute to the abnormalities in the renal handling of sodium and the development of hypertension in Dahl salt-sensitive rats. To determine whether a reduction in 20-HETE production in the outer medulla is sufficient to induce hypertension, an i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 44 4 شماره
صفحات -
تاریخ انتشار 2004